Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641700

RESUMEN

Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.

2.
Mol Ecol ; 33(7): e17311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468155

RESUMEN

Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the 'urban facilitation model' suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non-adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reduced Ne linked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.


Asunto(s)
Flujo Genético , Urbanización , Humanos , Ciudades , Ecosistema , Demografía
3.
PeerJ ; 10: e13788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164598

RESUMEN

Carnivores are currently colonizing cities where they were previously absent. These urban environments are novel ecosystems characterized by habitat degradation and fragmentation, availability of human food, and different prey assemblages than surrounding areas. Coyotes (Canis latrans) established a breeding population in New York City (NYC) over the last few decades, but their ecology within NYC is poorly understood. In this study, we used non-invasive scat sampling and DNA metabarcoding to profile vertebrate, invertebrate, and plant dietary items with the goal to compare the diets of urban coyotes to those inhabiting non-urban areas. We found that both urban and non-urban coyotes consumed a variety of plants and animals as well as human food. Raccoons (Procyon lotor) were an important food item for coyotes within and outside NYC. In contrast, white-tailed deer (Odocoileus virginianus) were mainly eaten by coyotes inhabiting non-urban areas. Domestic chicken (Gallus gallus) was the human food item found in most scats from both urban and non-urban coyotes. Domestic cats (Felis catus) were consumed by urban coyotes but were detected in only a small proportion of the scats (<5%), which differs markedly from high rates of cat depredation in some other cities. In addition, we compared our genetic metabarcoding analysis to a morphological analysis of the same scat samples. We found that the detection similarity between the two methods was low and it varied depending on the type of diet item.


Asunto(s)
Carnívoros , Coyotes , Ciervos , Humanos , Animales , Gatos , Coyotes/genética , Ciudad de Nueva York , Ecosistema , Código de Barras del ADN Taxonómico
4.
Trends Ecol Evol ; 37(11): 1006-1019, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35995606

RESUMEN

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.


Asunto(s)
Ecosistema , Urbanización , Biodiversidad , Ciudades , Ecología/métodos , Humanos
5.
Ecol Evol ; 11(23): 17191-17201, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938502

RESUMEN

Understanding the forces that drive genotypic and phenotypic change in wild populations is a central goal of evolutionary biology. We examined exome variation in populations of deer mice from two of the California Channel Islands: Peromyscus maniculatus elusus from Santa Barbara Island and P. m. santacruzae from Santa Cruz Island exhibit significant differences in olfactory predator recognition, activity timing, aggressive behavior, morphology, prevalence of Sin Nombre virus, and population densities. We characterized variation in protein-coding regions using exome capture and sequencing of 25 mice from Santa Barbara Island and 22 mice from Santa Cruz Island. We identified and examined 386,256 SNPs using three complementary methods (BayeScan, pcadapt, and LFMM). We found strong differences in molecular variation between the two populations and 710 outlier SNPs in protein-coding genes that were detected by all three methods. We identified 35 candidate genes from this outlier set that were related to differences in phenotypes between island populations. Enrichment analyses demonstrated that patterns of molecular variation were associated with biological processes related to response to chemical stimuli and regulation of immune processes. Candidate genes associated with olfaction (Gfy, Tlr2, Vmn13r2, numerous olfactory receptor genes), circadian activity (Cry1), anxiety (Brca1), immunity (Cd28, Eif2ak4, Il12a, Syne1), aggression (Cyp19a, Lama2), and body size (Bc16, Syne1) exhibited non-synonymous mutations predicted to have moderate to large effects. Variation in olfaction-related genes, including a stop codon in the Santa Barbara Island population, suggests loss of predator-recognition traits at the molecular level, consistent with a lack of behavioral aversion to fox feces. These findings also suggest that divergent pathogen prevalence and population density may have influenced adaptive immunity and behavioral phenotypes, such as reduced aggression. Overall, our study indicates that ecological differences between islands are associated with signatures of selection in protein-coding genes underlying phenotypes that promote success in those environments.

6.
Evol Appl ; 14(1): 99-116, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33519959

RESUMEN

Natural landscape heterogeneity and barriers resulting from urbanization can reduce genetic connectivity between populations. The evolutionary, demographic, and ecological effects of reduced connectivity may lead to population isolation and ultimately extinction. Alteration to the terrestrial and aquatic environment caused by urban influence can affect gene flow, specifically for stream salamanders who depend on both landscapes for survival and reproduction. To examine how urbanization affects a relatively common stream salamander species, we compared genetic connectivity of Eurycea bislineata (northern two-lined salamander) populations within and between streams in an urban, suburban, and rural habitat around the New York City (NYC) metropolitan area. We report reduced genetic connectivity between streams within the urban landscape found to correspond with potential barriers to gene flow, that is, areas with more dense urbanization (roadways, industrial buildings, and residential housing). The suburban populations also exhibited areas of reduced connectivity correlated with areas of greater human land use and greater connectivity within a preserve protected from development. Connectivity was relatively high among neighboring rural streams, but a major roadway corresponded with genetic breaks even though the habitat contained more connected green space overall. Despite greater human disturbance across the landscape, urban and suburban salamander populations maintained comparable levels of genetic diversity to their rural counterparts. Yet small effective population size in the urban habitats yielded a high probability of loss of heterozygosity due to genetic drift in the future. In conclusion, urbanization impacted connectivity among stream salamander populations where its continual influence may eventually hinder population persistence for this native species in urban habitats.

7.
Evol Appl ; 14(1): 150-162, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33519962

RESUMEN

Urbanization may restrict, facilitate, or have no effect on gene flow, depending on the organism and extent of urbanization. In human commensals, with high dispersal ability, urbanization can facilitate gene flow by providing continuous suitable habitat across a wide range. Additionally, suburban or rural areas with lower human population density may act as a barrier to gene flow for these human commensals. Spatial population genetic approaches provide a means to understand genetic connectivity across geographically expansive areas that encompass multiple metropolitan areas. Here, we examined the spatial genetic patterns of feral pigeons (Columba livia) living in cities in the eastern United States. We focused our sampling on the Northeastern megacity, which is a region covering six large cities (Boston, Providence, New York City, Philadelphia, Baltimore, and Washington, DC). We performed ddRAD-Seqon 473 samples, recovered 35,200 SNPs, and then used multiple evolutionary clustering analyses to investigate population structuring. These analyses revealed that pigeons formed two genetic clusters-a northern cluster containing samples from Boston and Providence and a southern cluster containing all other samples. This substructuring is possibly due to reduced urbanization across coastal Connecticut that separates Boston and Providence from New York and mid-Atlantic cities. We found that pairs of pigeons within 25 km are highly related (Mantel r = 0.217, p = .001) and that beyond 50 km, pigeons are no more related than they would be at random. Our analysis detected higher-than-expected gene flow under an isolation by distance model within each city. We conclude that the extreme urbanization characteristic of the Northeastern megacity is likely facilitating gene flow in feral pigeons.

8.
Evol Appl ; 14(1): 163-177, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33519963

RESUMEN

As the rate of urbanization continues to increase globally, a growing body of research is emerging that investigates how urbanization shapes the movement-and consequent gene flow-of species in cities. Of particular interest are native species that persist in cities, either as small relict populations or as larger populations of synanthropic species that thrive alongside humans in new urban environments. In this study, we used genomic sequence data (SNPs) and spatially explicit individual-based analyses to directly compare the genetic structure and patterns of gene flow in two small mammals with different dispersal abilities that occupy the same urbanized landscape to evaluate how mobility impacts genetic connectivity. We collected 215 white-footed mice (Peromyscus leucopus) and 380 big brown bats (Eptesicus fuscus) across an urban-to-rural gradient within the Providence, Rhode Island (U.S.A.) metropolitan area (population =1,600,000 people). We found that mice and bats exhibit clear differences in their spatial genetic structure that are consistent with their dispersal abilities, with urbanization having a stronger effect on Peromyscus mice. There were sharp breaks in the genetic structure of mice within the Providence urban core, as well as reduced rates of migration and an increase in inbreeding with more urbanization. In contrast, bats showed very weak genetic structuring across the entire study area, suggesting a near-panmictic gene pool likely due to the ability to disperse by flight. Genetic diversity remained stable for both species across the study region. Mice also exhibited a stronger reduction in gene flow between island and mainland populations than bats. This study represents one of the first to directly compare multiple species within the same urban-to-rural landscape gradient, an important gap to fill for urban ecology and evolution. Moreover, here we document the impacts of dispersal capacity on connectivity for native species that have persisted as the urban landscape matrix expands.

9.
Evol Appl ; 14(1): 198-209, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33519965

RESUMEN

Urban Norway rats (Rattus norvegicus) carry several pathogens transmissible to people. However, pathogen prevalence can vary across fine spatial scales (i.e., by city block). Using a population genomics approach, we sought to describe rat movement patterns across an urban landscape and to evaluate whether these patterns align with pathogen distributions. We genotyped 605 rats from a single neighborhood in Vancouver, Canada, and used 1,495 genome-wide single nucleotide polymorphisms to identify parent-offspring and sibling relationships using pedigree analysis. We resolved 1,246 pairs of relatives, of which only 1% of pairs were captured in different city blocks. Relatives were primarily caught within 33 meters of each other leading to a highly leptokurtic distribution of dispersal distances. Using binomial generalized linear mixed models, we evaluated whether family relationships influenced rat pathogen status with the bacterial pathogens Leptospira interrogans, Bartonella tribocorum, and Clostridium difficile, and found that an individual's pathogen status was not predicted any better by including disease status of related rats. The spatial clustering of related rats and their pathogens lends support to the hypothesis that spatially restricted movement promotes the heterogeneous patterns of pathogen prevalence evidenced in this population. Our findings also highlight the utility of evolutionary tools to understand movement and rat-associated health risks in urban landscapes.

10.
Evol Appl ; 14(1): 248-267, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33519968

RESUMEN

Cities are uniquely complex systems regulated by interactions and feedbacks between nature and human society. Characteristics of human society-including culture, economics, technology and politics-underlie social patterns and activity, creating a heterogeneous environment that can influence and be influenced by both ecological and evolutionary processes. Increasing research on urban ecology and evolutionary biology has coincided with growing interest in eco-evolutionary dynamics, which encompasses the interactions and reciprocal feedbacks between evolution and ecology. Research on both urban evolutionary biology and eco-evolutionary dynamics frequently focuses on contemporary evolution of species that have potentially substantial ecological-and even social-significance. Still, little work fully integrates urban evolutionary biology and eco-evolutionary dynamics, and rarely do researchers in either of these fields fully consider the role of human social patterns and processes. Because cities are fundamentally regulated by human activities, are inherently interconnected and are frequently undergoing social and economic transformation, they represent an opportunity for ecologists and evolutionary biologists to study urban "socio-eco-evolutionary dynamics." Through this new framework, we encourage researchers of urban ecology and evolution to fully integrate human social drivers and feedbacks to increase understanding and conservation of ecosystems, their functions and their contributions to people within and outside cities.

11.
Genome Biol Evol ; 13(1)2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33211096

RESUMEN

Brown rats (Rattus norvegicus) thrive in urban environments by navigating the anthropocentric environment and taking advantage of human resources and by-products. From the human perspective, rats are a chronic problem that causes billions of dollars in damage to agriculture, health, and infrastructure. Did genetic adaptation play a role in the spread of rats in cities? To approach this question, we collected whole-genome sequences from 29 brown rats from New York City (NYC) and scanned for genetic signatures of adaptation. We tested for 1) high-frequency, extended haplotypes that could indicate selective sweeps and 2) loci of extreme genetic differentiation between the NYC sample and a sample from the presumed ancestral range of brown rats in northeast China. We found candidate selective sweeps near or inside genes associated with metabolism, diet, the nervous system, and locomotory behavior. Patterns of differentiation between NYC and Chinese rats at putative sweep loci suggest that many sweeps began after the split from the ancestral population. Together, our results suggest several hypotheses on adaptation in rats living in proximity to humans.


Asunto(s)
Adaptación Fisiológica/genética , Ratas/genética , Animales , China , Haplotipos , Ciudad de Nueva York , Roedores/genética , Selección Genética , Alineación de Secuencia
12.
Ecol Evol ; 10(11): 4739-4748, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32551057

RESUMEN

Urbanization exposes species to novel environments and selection pressures that may change morphological traits within a population. We investigated how the shape and size of crania and mandibles changed over time within a population of brown rats (Rattus norvegicus) living in Manhattan, New York, USA, a highly urbanized environment. We measured 3D landmarks on the cranium and mandible of 62 adult individuals sampled in the 1890s and 2010s. Static allometry explained approximately 22% of shape variation in crania and mandible datasets, while time accounted for approximately 14% of variation. We did not observe significant changes in skull size through time or between the sexes. Estimating the P-matrix revealed that directional selection explained temporal change of the crania but not the mandible. Specifically, rats from the 2010s had longer noses and shorter upper molar tooth rows, traits identified as adaptive to colder environments and higher quality or softer diets, respectively. Our results highlight the continual evolution to selection pressures. We acknowledge that urban selection pressures impacting cranial shape likely began in Europe prior to the introduction of rats to Manhattan. Yet, our study period spanned changes in intensity of artificial lighting, human population density, and human diet, thereby altering various aspects of rat ecology and hence pressures on the skull.

13.
Bioessays ; 42(5): e1900160, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32173902

RESUMEN

Phylogeography and zooarchaeology are largely separate disciplines, yet each interrogates relationships between humans and commensal species. Knowledge gained about human history from studies of four commensal rats (Rattus rattus, R. tanezumi, R. exulans, and R. norvegicus) is outlined, and open questions about their spread alongside humans are identified. Limitations of phylogeographic and zooarchaeological studies are highlighted, then how integration would increase understanding of species' demographic histories and resultant inferences about human societies is discussed. How rat expansions have informed the understanding of human migration, urban settlements, trade networks, and intra- and interspecific competition is reviewed. Since each rat species is associated with different human societies, they identify unique ecological and historical/cultural conditions that influenced their expansion. Finally, priority research areas including nuclear genome based phylogeographies are identified using archaeological evidence to understand R. norvegicus expansion across China, multi-wave colonization of R. rattus across Europe, and competition between R. rattus and R. norvegicus.


Asunto(s)
Roedores , Simbiosis , Animales , Humanos , Filogeografía , Ratas
14.
Heredity (Edinb) ; 124(1): 15-27, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31399718

RESUMEN

Population genomics offers innovative approaches to test hypotheses related to the source and timing of introduction of invasive species. These approaches are particularly appropriate to study colonization of island ecosystems. The brown rat is a cold-hardy global invasive that has reached most of the world's island ecosystems, including even highly isolated archipelagoes such as the Faroe Islands in the North Atlantic Ocean. Historic records tell of rats rafting to the southern island of Suðuroy in 1768 following a shipwreck off the coast of Scotland, then expanding across the archipelago. We investigated the demographic history of brown rats in the Faroes using 50,174 SNPs. We inferred three independent introductions of rats, including to Suðuroy, the islands of Borðoy and Viðoy, and onto Streymoy from which they expanded to Eysturoy and Vágar. All Faroese populations showed signs of strong bottlenecks and declining effective population size. We inferred that these founder events removed low frequency alleles, the exact data needed to estimate recent demographic histories. Therefore, we were unable to accurately estimate the timing of each invasion. The difficulties with demographic inference may be applicable to other invasive species, particularly those with extreme and recent bottlenecks. We identified three invasions of brown rats to the Faroe Islands that resulted in highly differentiated populations that will be useful for future studies of life history variation and genomic adaptation.


Asunto(s)
Genética de Población , Especies Introducidas/historia , Ratas/genética , Alelos , Animales , Dinamarca , Genómica , Historia del Siglo XVIII , Historia del Siglo XX , Polimorfismo de Nucleótido Simple , Densidad de Población
15.
Mol Ecol ; 28(18): 4138-4151, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31482608

RESUMEN

Evidence is growing that human modification of landscapes has dramatically altered evolutionary processes. In urban population genetic studies, urbanization is typically predicted to act as a barrier that isolates populations of species, leading to increased genetic drift within populations and reduced gene flow between populations. However, urbanization may also facilitate dispersal among populations, leading to higher genetic diversity within, and lower differentiation between, urban populations. We reviewed the literature on nonadaptive urban evolution to evaluate the support for each of these urban fragmentation and facilitation models. In a review of the literature with supporting quantitative analyses of 167 published urban population genetics studies, we found a weak signature of reduced within-population genetic diversity and no evidence of consistently increased between-population genetic differentiation associated with urbanization. In addition, we found that urban landscape features act as barriers or conduits to gene flow, depending on the species and city in question. Thus, we speculate that dispersal ability of species and environmental heterogeneity between cities contributes to the variation exhibited in our results. However, >90% of published studies reviewed here showed an association of urbanization with genetic drift or gene flow, highlighting the strong impact of urbanization on nonadaptive evolution. It is clear that species biology and city heterogeneity obscure patterns of genetic drift and gene flow in a quantitative analysis. Thus, we suggest that future research makes comparisons of multiple cities and nonurban habitats, and takes into consideration species' natural history, environmental variation, spatial modelling and marker selection.


Asunto(s)
Flujo Génico , Flujo Genético , Urbanización , Variación Genética , Geografía , Modelos Genéticos
16.
Genome Res ; 29(5): 762-770, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30910795

RESUMEN

Fossil evidence indicates that the globally distributed brown rat (Rattus norvegicus) originated in northern China and Mongolia. Historical records report the human-mediated invasion of rats into Europe in the 1500s, followed by global spread because of European imperialist activity during the 1600s-1800s. We analyzed 14 genomes representing seven previously identified evolutionary clusters, and tested alternative demographic models to infer patterns of range expansion, divergence times, and changes in effective population (N e) size for this globally important pest species. We observed three range expansions from the ancestral population that produced the Pacific (diverged ∼16.1 kya), eastern China (∼17.5 kya), and Southeast (SE) Asia (∼0.86 kya) lineages. Our model shows a rapid range expansion from SE Asia into the Middle East and then continued expansion into central Europe 788 yr ago (1227 AD). We observed declining N e within all brown rat lineages from 150-1 kya, reflecting population contractions during glacial cycles. N e increased since 1 kya in Asian and European, but not in Pacific, evolutionary clusters. Our results support the hypothesis that northern Asia was the ancestral range for brown rats. We suggest that southward human migration across China between the 800s-1550s AD resulted in the introduction of rats to SE Asia, from which they rapidly expanded via existing maritime trade routes. Finally, we discovered that North America was colonized separately on both the Atlantic and Pacific seaboards, by evolutionary clusters of vastly different ages and genomic diversity levels. Our results should stimulate discussions among historians and zooarcheologists regarding the relationship between humans and rats.


Asunto(s)
Demografía , Ratas , Animales , Asia Sudoriental , Evolución Biológica , China , ADN Mitocondrial/genética , Europa (Continente) , Historia Antigua , Migración Humana/historia , Humanos , América del Norte , Filogenia , Filogeografía , Ratas/genética , Secuenciación Completa del Genoma
17.
Evol Appl ; 12(3): 384-398, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30828362

RESUMEN

Urban ecosystems are rapidly expanding throughout the world, but how urban growth affects the evolutionary ecology of species living in urban areas remains largely unknown. Urban ecology has advanced our understanding of how the development of cities and towns change environmental conditions and alter ecological processes and patterns. However, despite decades of research in urban ecology, the extent to which urbanization influences evolutionary and eco-evolutionary change has received little attention. The nascent field of urban evolutionary ecology seeks to understand how urbanization affects the evolution of populations, and how those evolutionary changes in turn influence the ecological dynamics of populations, communities, and ecosystems. Following a brief history of this emerging field, this Perspective article provides a research agenda and roadmap for future research aimed at advancing our understanding of the interplay between ecology and evolution of urban-dwelling organisms. We identify six key questions that, if addressed, would significantly increase our understanding of how urbanization influences evolutionary processes. These questions consider how urbanization affects nonadaptive evolution, natural selection, and convergent evolution, in addition to the role of urban environmental heterogeneity on species evolution, and the roles of phenotypic plasticity versus adaptation on species' abundance in cities. Our final question examines the impact of urbanization on evolutionary diversification. For each of these six questions, we suggest avenues for future research that will help advance the field of urban evolutionary ecology. Lastly, we highlight the importance of integrating urban evolutionary ecology into urban planning, conservation practice, pest management, and public engagement.

18.
Proc Biol Sci ; 285(1880)2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29875297

RESUMEN

Urbanization often substantially influences animal movement and gene flow. However, few studies to date have examined gene flow of the same species across multiple cities. In this study, we examine brown rats (Rattus norvegicus) to test hypotheses about the repeatability of neutral evolution across four cities: Salvador, Brazil; New Orleans, USA; Vancouver, Canada; and New York City, USA. At least 150 rats were sampled from each city and genotyped for a minimum of 15 000 genome-wide single nucleotide polymorphisms. Levels of genome-wide diversity were similar across cities, but varied across neighbourhoods within cities. All four populations exhibited high spatial autocorrelation at the shortest distance classes (less than 500 m) owing to limited dispersal. Coancestry and evolutionary clustering analyses identified genetic discontinuities within each city that coincided with a resource desert in New York City, major waterways in New Orleans, and roads in Salvador and Vancouver. Such replicated studies are crucial to assessing the generality of predictions from urban evolution, and have practical applications for pest management and public health. Future studies should include a range of global cities in different biomes, incorporate multiple species, and examine the impact of specific characteristics of the built environment and human socioeconomics on gene flow.


Asunto(s)
Flujo Génico , Genotipo , Polimorfismo de Nucleótido Simple , Brasil , Colombia Británica , Ciudades , Análisis por Conglomerados , Nueva Orleans , Ciudad de Nueva York
19.
Evol Appl ; 11(5): 718-726, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29875813

RESUMEN

Over 500 strains of inbred brown rats (Rattus norvegicus) have been developed for use as a biomedical model organism. Most of these inbred lines were derived from the colony established at the Wistar Institute in 1906 or its descendants following worldwide distribution to research and breeding centers. The geographic source of the animals that founded the Wistar colony has been lost to history; thus, we compared 25 inbred rat strains to 326 wild rats from a global diversity dataset at 32 k SNPs, and 47 mitochondrial genomes to identify the source populations. We analyzed nuclear genomic data using principal component analyses and co-ancestry heat maps, and mitogenomes using phylogenetic trees and networks. In the nuclear genome, inbred rats clustered together indicating a single geographic origin for the strains studied and showed admixed ancestral variation with wild rats in eastern Asia and western North America. The Sprague Dawley derived, Wistar derived, and Brown Norway strains each had mitogenomes from different clades which diverged between 13 and 139 kya. Thus, we posit that rats originally collected for captive breeding had high mitochondrial diversity that became fixed through genetic drift and/or artificial selection. Our results show that these important medical models share common genomic ancestry from a few source populations, and opportunities exist to create new strains with diverse genomic backgrounds to provide novel insight into the genomic basis of disease phenotypes.

20.
Mol Ecol ; 27(1): 83-98, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29165929

RESUMEN

Human commensal species such as rodent pests are often widely distributed across cities and threaten both infrastructure and public health. Spatially explicit population genomic methods provide insights into movements for cryptic pests that drive evolutionary connectivity across multiple spatial scales. We examined spatial patterns of neutral genomewide variation in brown rats (Rattus norvegicus) across Manhattan, New York City (NYC), using 262 samples and 61,401 SNPs to understand (i) relatedness among nearby individuals and the extent of spatial genetic structure in a discrete urban landscape; (ii) the geographic origin of NYC rats, using a large, previously published data set of global rat genotypes; and (iii) heterogeneity in gene flow across the city, particularly deviations from isolation by distance. We found that rats separated by ≤200 m exhibit strong spatial autocorrelation (r = .3, p = .001) and the effects of localized genetic drift extend to a range of 1,400 m. Across Manhattan, rats exhibited a homogeneous population origin from rats that likely invaded from Great Britain. While traditional approaches identified a single evolutionary cluster with clinal structure across Manhattan, recently developed methods (e.g., fineSTRUCTURE, sPCA, EEMS) provided evidence of reduced dispersal across the island's less residential Midtown region resulting in fine-scale genetic structuring (FST  = 0.01) and two evolutionary clusters (Uptown and Downtown Manhattan). Thus, while some urban populations of human commensals may appear to be continuously distributed, landscape heterogeneity within cities can drive differences in habitat quality and dispersal, with implications for the spatial distribution of genomic variation, population management and the study of widely distributed pests.


Asunto(s)
Genética de Población , Geografía , Animales , Variación Genética , Ciudad de Nueva York , Densidad de Población , Análisis de Componente Principal , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...